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Abstract

We aim to improve the Inverted Neural Radiance Fields
(iNeRF) algorithm which defines the image pose estima-
tion problem as a NeRF based iterative linear optimiza-
tion. NeRFs are novel neural space representation models
that can synthesize photorealistic novel views of real-world
scenes or objects. Our contributions are as follows: we
extend the localization optimization objective with a depth-
based loss function, we introduce a multi-image based loss
function where a sequence of images with known relative
poses are used without increasing the computational com-
plexity, we omit hierarchical sampling during volumetric
rendering, meaning only the coarse model is used for pose
estimation, and we show that by extending the sampling in-
terval convergence can be achieved even for higher initial
pose estimate errors. With the proposed modifications the
convergence speed is significantly improved, and the basin
of convergence is substantially extended.

1. Introduction

Image pose estimation has been the focus of numerous
research articles. A robust and efficient solution to this
problem is particularly useful for extended reality, robotics,
and Simultaneous Localization and Mapping (SLAM) ap-
plications. There are several competing paradigms, like
the feature-based approach composed of: interest point
detection, matching, filtering, and pose estimation steps
[3, 5, 21]; or the render-and-compare method which tries
to reduce the visual differences between a rendered and
an observed image [26, 24, 13]. The render-and-compare
paradigm enables the solution of pose estimation up to
pixel-level accuracy based on an accurate model of the en-
vironment. In our solution, we follow the latter, which is
convenient if the reconstruction of the environment’s three-
dimensional structure is feasible.

In recent years, a novel space representation approach
gained disruptive popularity using NeRFs [17]. In essence,
NeRFs can be seen as implicit functions that define the
scene’s surface, depth and appearance properties, making
them particularly suited for complex and detailed scene re-
construction. The advantage of NeRFs is that training can
be done based on a sparse set of two-dimensional RGB im-
ages with known relative poses. The relative pose infor-
mation required for the training can be computed with the
help of structure-from-motion or visual(-inertial) odometry
algorithms [22, 20, 6, 3].

Improving the training and rendering speed [7, 18, 27,
9, 11], the modeling accuracy [2, 16], and investigating ad-
ditional applications of NeRFs shows high interest in the
research community. NeRFs have potential applicability in
depth maps generation [4], can be used in navigation [1],
[25], localization [14, 26] and six degrees of freedom orien-
tation estimation [12].

The problem we aim to solve is to better approximate a
captured image’s absolute pose with respect to a reference
NeRF model representing the scene.

2. Literature Review

NeRFs [17] are neural networks that represent 3D scenes
as continuous functions, mapping 3D coordinates to their
corresponding scene appearance properties, such as RGB
color and volumetric density value. This continuous repre-
sentation distinguishes them from most traditional 3D mod-
els, which often rely on discrete voxels or point clouds.
For rendering RGB images, the final pixel color values are
calculated based on differentiable volume rendering [19].
Rays are cast from the virtual camera’s center through each
pixel. Points are sampled along the rays where the model
is evaluated. With the given volumetric density predictions,
the accumulated transmittance can be formulated for each
point, which serves as the probability that the ray reaches
that point without hitting any other obstacle. With the trans-



mittance as weights, the RGB predictions can be averaged,
yielding the final RGB values for each pixel.

In order to improve sampling efficiency by avoiding the
oversampling of empty spaces, in [17] the concept of hier-
archical sampling was introduced, where two neural net-
works are used simultaneously. First, a coarse model is
used, where sample points are chosen with a uniform dis-
tribution along each ray. The inferred volumetric density
values are then used to better estimate where the object’s
surface will intersect the ray. Based on this information a
second set of locations is sampled using inverse transform
sampling for the fine model, choosing points closer to the
object’s surface. In the original NeRF implementation, the
structural complexity of these neural networks is the same,
but there are twice as many sample points along the rays
during the evaluation of the fine model.

In [26] it was shown, that a trained NeRF model can be
used for pose estimation as the result of an optimization
problem. NeRFs can render virtual images for any given
virtual camera pose. A pose is defined as a member of the
Special Euclidean group SE(3), which has 6 degrees of free-
dom. iNeRF inverts the mapping between pose and image,
utilizing the differentiability property of the volumetric ren-
dering pipeline. To estimate the pose of an observed im-
age iNeRF renders pixels from an initial pose and compares
them with the corresponding pixels of the observed image
resulting in the intensity loss. The gradients of the inten-
sity loss function with respect to the initial pose are driving
first-order optimization algorithms in an iterative way. The
algorithm was tested on both real-life and synthetic datasets
and achieved convergence only if the initial pose was al-
ready close to the pose of the observed image. Real appli-
cations of this approach are only plausible if both the range
and speed of convergence can be further improved.

The beneficial effect of depth supervision for the train-
ing of NeRFs was first shown in DS-NeRF [4]. Faster
training and a more accurate space/structure representation
was achieved by extending the original loss function with
a sparse depth-based loss term. Many structural artifacts
that are present in the case of NeRF models trained with-
out depth supervision can be removed, making possible the
use of structural information for pose estimation. Reference
depth information can be gathered by using structure-from-
motion, depth prediction algorithms or by sensorial means.
On the other hand, depth values can be easily predicted for
the rendered images, without any further computational re-
quirements. Our method extends the original pose estima-
tion objective with depth-based loss terms, therefore we uti-
lize depth information during localization as well. To this
end, it is beneficial to train NeRF models that have accurate
structure. In our experiments, all the NeRF models were
trained with depth supervision.

Recently, the iNeRF algorithm was enhanced in [13, 14]

by formulating the camera pose estimation in a particle fil-
ter framework where the weights/goodness of the particles
are defined as the loss between a rendered and an observed
image as was introduced originally in [26]. Multiple cam-
era pose hypotheses are simultaneously optimized using a
Monte Carlo sampling method. It was also shown that de-
coupling the translational and rotational components of the
camera pose parameterization is beneficial for the estima-
tion process. The suggested modifications resulted in sig-
nificant improvements in optimization robustness and speed
compared to [26]. Our contributions focus on creating a bet-
ter localization objective, therefore they can be combined
with the contributions of [13] and [14].

3. Methodology
To use NeRFs for image pose estimation in real-time ap-

plications, the performance and robustness of the algorithm
have to be improved while storage requirements and infer-
ence time have to be reduced. To achieve this, we introduce
three major modifications compared to previous research
[26, 13]: we extend the localization optimization objective
with a depth-based loss function, we sample reference pix-
els from multiple view directions based on a moving win-
dow of previous frames and their relative transformation es-
timations, we omit hierarchical sampling during volumet-
ric rendering, meaning only the coarse model is used for
pose estimation. Our algorithm is formulated in 1, which
we call BID-NeRF, as in Bundle-adjusted Inverted Depth
supervised Neural Radiance Fields.

The iNeRF’s original problem formulation can be seen in
Eq. 1 where ĉr is the rendered color for the ray r, and cr is
the corresponding pixel from the reference image. Each ray
r is transformed to the reference coordinate frame from the
camera’s local coordinate frame with the actual prediction
of the camera’s T pose.

T ∗ = arg min
T∈SE(3)

Lrgb(T |Irgb,Θ)︷ ︸︸ ︷
1

|R|
∑

r∈R⊂Irgb

∥ĉr − cr∥22 (1)

δ∗ = arg min
δ∈se(3)

Lrgb(Tinit ⊕ δ|I,Θ) (2)

While several optimization algorithms exist, we decided
to use the Adam optimizer, introduced in [10]. The updates
to the image poses in se(3) are calculated in the local tan-
gent space of SE(3) [23]. Eq. 2 shows the ideal solution to
the formulated problem, where T ∗ is the globally optimal
transformation and δ is the inverse of the initial error repre-
sented in the local tangent space. If this inverse vector was
known, we could simply add it to the initial pose estimate
to get the optimal solution. Instead of directly searching for
the optimal vector though, we iteratively update our pose
estimate as shown in Alg. 1. The ⊕ operator adds a vec-
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tor from a Lie algebra to an element from its corresponding
Lie group by projecting the vector to a new group element
and adding them together through the group’s composition
operation [23].

3.1. Depth information

DS-NeRF [4] showed how depth supervision improves
the convergence rate for training NeRFs, by helping the
model reconstruct the structure of the environment. This
way the learned space representation will contain fewer
structural noise or artifacts caused by the errors of volu-
metric density predictions. The appearance of such artifacts
can be best described as the result of the shape-radiance
ambiguity in NeRFs, explained in [28]. This effect can be
reduced by explicitly introducing more constraints in the
learning process.

Depth supervision can be used as such a constraint, im-
proving the precision of the predicted depth maps. Depth
information can also be utilized during pose estimation if
depth information is available. Depth maps are free of
textures and lighting differences. Therefore, they have
smoother image-space gradients compared to RGB images.
Our hypothesis is that during pose estimation both conver-
gence speed and basin of convergence benefit from the in-
corporation of depth information.

d̂(r) =

N∑
i=1

Ti(1− e−σi(ti+1−ti))ti (3)

where Ti = e−
∑i−1

j=1 σj(tj+1−tj)

Ld(T |Id,Θ) =
1

|D|
∑

d∈D⊂Id

∥∥∥d̂− d
∥∥∥2
2

(4)

L(T |I,Θ) = Lrgb(T |Irgb,Θ) + λd · Ld(T |Id,Θ) (5)

Depth predictions d̂ for rays r are calculated as shown in
Eq. 3, where ti denotes the distance of the i-th sample point
from the camera and σi is the model’s density prediction for
that point. Eq. 5 shows how depth predictions can be added
to the original RGB loss, where λd is a new, application-
dependent hyperparameter. In our tests, we used λd = 1,
which our experiments proved to be a reasonable choice.
The added loss term Ldepth is the mean-squared error be-
tween the predictions and the ground-truth depth values d,
which is similar to the intensity loss term Lrgb as shown in
Eq. 1. The depth predictions do not increase the computa-
tional complexity of the volumetric rendering.

If dense depth predictions for every RGB pixel cannot be
obtained, unlike with RGB-D cameras, other methods can
be used as well. The depth supervision during pose estima-
tion also works with sparse depth information, as shown in
[4]. These can be obtained by off-the-shelf structure from
motion algorithms such as COLMAP [22]. Another ap-
proach would be to use lidar sensors and render separate

Figure 1: Simultaneous localization of multiple images, es-
timating only the last camera pose.

virtual rays using volumetric rendering to match the sen-
sor’s field of view.

3.2. Multiple images

Having initial pose estimates for each input image ob-
tained by a visual(-inertial) odometry algorithm, we can
assume that the errors of their relative transformations are
significantly lower compared to the errors of their absolute
transformations. Errors in state estimation solutions usu-
ally come from an accumulated drift, which is ideally in-
finitesimal for only a few steps. With this assumption, a
moving window of sequential images can be localized si-
multaneously. The concept of image sequence localization
with known relative pose transformation is shown in Fig. 1.

δ∗ = arg min
δ∈se(3)

1

k

k∑
i=1

L((Tinit ⊕ δ) ◦ T k
i |Ii,Θ) (6)

Eq. 6 shows how multiple images can be used during local-
ization. It averages the loss function L introduced in Eq. 5
for the single image use-case, with the only difference that
each ray is transformed from the i-th image’s local coordi-
nate frame to the last image’s coordinate frame, using their
relative transformations T k

i . Tinit is the initial estimate of
the absolute pose for the last image K.

The use of an image sequence instead of a single image
means that we have more viewing angles from which rays
can be sampled, with more reference pixel values. We ex-
pect this increase in sampling space will greatly improve
the performance of the inherent optimization. Also, this in-
crease in information is free from any extra calculations,
so it does not reduce execution speed. In [26] it was al-
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ready shown, that rendering more rays improves the perfor-
mance of the optimization. However, evaluating too many
rays is often not feasible on embedded systems. We show
that we can achieve better results while keeping the compu-
tational complexity fixed, namely, equally distributing the
same number of sampled rays between the images. Our
second hypothesis is that by incorporating multiple images
while using the same number of rays, the pose estimation
will improve in robustness.

3.3. Coarse model

In [17] hierarchical sampling for volume rendering was
introduced. Two separate neural networks: a coarse and
a fine model were used for rendering. The fine model
achieves high accuracy if rays are sampled close to the ob-
ject’s surface. The purpose of the coarse model is to obtain
information about the location of the surfaces in the space,
resulting in a more efficient volume sampling method for
the fine model. This approach improves the reconstruction
capabilities of NeRFs, enabling them to represent finer de-
tails with higher frequencies. Fig. 2 compares the predic-
tions of the coarse and fine model for both the σ and RGB
values along a selected ray. Finer details lead to higher im-
age gradients in RGB predictions, as shown on the left side
of Fig. 3. This effect is undesirable if we want to use the
models for pose estimation. Our third hypothesis is that
if we purposefully reduce the complexity of the represented
space, the localization capabilities of NeRFs will improve.

Figure 2: RGB and σ predictions on a ray through the z-
axis of the chair object using both the fine and coarse mod-
els. Predictions for the fine model are noisier, especially the
inside of the objects, where the model is rarely evaluated.
σ predictions for the coarse model are flat, and uncertain
where the surfaces lie, which is disadvantageous for recon-
struction but beneficial for pose optimization.

We implemented this approach by omitting hierarchical
sampling completely and only using the coarse model for
pose estimation. This method can be combined with the
original hierarchical setup, meaning both coarse and fine
models could be used for model training and visualization
and only the coarse for localization.

Figure 3: RGB renderings based on the fine and the coarse
model respectively (top) and σ predictions for the Lego ob-
ject on a vertical slice using the fine and coarse models re-
spectively (bottom).

We expect that by using the coarse model for rough pose
estimation, the smoother gradients of the RGB and volu-
metric density values will increase the convergence rate.
Fig. 3 (bottom) shows the sampled values of the volumet-
ric density for fine and coarse models. It can be observed
that the σ predictions of the coarse model are also present
in areas away from the surface of the object, while the fine
model produces much sharper changes. The gradients of the
coarse model’s predictions are smoother, making them fa-
vorable for first-order optimization algorithms. Using only
the coarse model helps the convergence and reduces stor-
age requirements if visualization is not necessary, as only
one neural network must be stored as a localization map.
Furthermore, by eliminating the fine model, a substantial
decrease in computational complexity can be achieved.

4. Results
To support the hypotheses we compared the performance

of BID-NeRF and iNeRF based on the following perfor-
mance metrics: convergence speed, accuracy, and robust-
ness based on the Blender dataset [17]. Each test consists of
multiple localizations based on RGB-D images with known
pose estimations. These initial transformations contain er-
rors in both their rotational and translational components.
For the statistical tests, we used perturbation vectors, with
fixed lengths and random directions, added to the corre-
sponding elements of the Lie algebra for the rotational and
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Figure 4: Convergence speed evaluated on all eight objects in the Blender dataset with three different magnitudes of initial
translational error. With and without the depth term in the loss function (a), using the coarse or fine models (b), and using
one or multiple images (8 images rotated around the object with 15° steps) and ray sampling methods (wide: 2x distance
between near and far planes) (c).

Algorithm 1: BID-NeRF
Input: K length of image sequence

Ii i-th RGB-D image and Ti relative pose to
the last camera
Θ coarse NeRF model
κ intrinsic camera parameters
ϵ residual error threshold, max steps
threshold
Test initial pose hypothesis for the last image

Output: T
while s < max steps and L < ϵ do

for i ∈ [1..K] do
uv1...mi , c1...mi , d1...mi =
sample m pixels(Ii)
r1...mlocali

= cast rays(uv1...mi , κ)

T s
absi

= (T s
est ⊕ δ) ◦ Ti

r1...mmodeli
= transform rays(r1...mlocali

, T s
absi

)

ĉ1...mi , d̂1...mi = render rays(r1...mmodeli
,Θ)

Lrgb =
1
m

∑
j

∥∥∥ĉji − cji

∥∥∥2
2

Ldepth = 1
m

∑
j

∥∥∥d̂ji − dji

∥∥∥2
2

Li = Lrgb + λd · Ldepth

T s+1
est = T s

est ⊕Adam(∇δ(
1
K

∑
Li))

T = T s+1
est

translational components. In [26], translational perturba-
tion vectors with lengths within [0, 0.2] meters were used.
To show that the range of convergence can be expanded, we
used vectors with lengths between [0.5, 3.4] meters. We
show the length of the translational perturbation vector in
meters where the reference objects are scaled into a 2x2x2m

cube. The lengths of the rotational perturbation vectors
were kept in a range of [0.2, 1.4], which resulted in rota-
tional errors under absolute 45 degrees, measured between
the ground truth and the estimated rotational translations.

Each optimization is run for 1000 steps. For each exper-
iment, we use the same amount of rays (2048) distributed
between different input images. We used Huber loss [8] as
loss function to decrease the impact of outliers. Pixels are
resampled for each iteration as it adds further stochasticity
to the optimization. First-order optimization algorithms of-
ten benefit from stochastic gradient estimation as it helps
them to avoid getting stuck in local minima.

The pose estimation is considered successful if the orig-
inal translational error is reduced to at least 10%. The
convergence speed is measured in the optimization steps
needed to achieve this threshold. In real applications the
optimal transformation is unknown. In these scenarios, a
meaningful heuristic could be used based on the final loss
function to detect convergence, as demonstrated in Alg. 1.

4.1. Depth information and Coarse model

As shown in Fig. 4 (a-b), convergence speed is increased
by the incorporation of depth information and utilization
of the coarse model instead of the fine. These results only
contain the tests where convergence was achieved. Table 1
shows the percentage of convergence combined for all ini-
tial translational error magnitudes. Compared to the orig-
inal iNeRF approach by applying the the depth regulariza-
tion term and by using only the coarse model a 70% increase
in the number of converged tests is achieved.

Depth information has already been proven useful for lo-
calization tasks in many applications. The reason why using
the coarse model has similar effects might seem unintuitive.
During the training of NeRFs, the coarse model is evaluated
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Fine Coarse
RGB + Depth 87.5% 95.83%
RGB 25% 75%

Table 1: Percentage of converged tests for the Blender
dataset with three different initial translational errors com-
bined [0.5m, 0.8m, 1.2m].

at random points in the space with a uniform distribution. In
contrast, the fine model is more likely to be evaluated closer
to the surfaces. This makes the rendered images more accu-
rate compared to the images rendered with the coarse model
as seen in Fig. 3 (top), which seems to be more blurred. The
same can be said about the raw σ predictions of the model,
shown in Fig. 3 (bottom). In line with our previous hypoth-
esis in section 3.3, these blurred predictions seem to help
the optimization, achieving the same effect as applying a
low pass filter to the image.

4.2. Multiple images

Image pose estimation based on image sequences can be
easily simulated with the Blender dataset. Every model has
200 reference images with known poses around the repre-
sented object(s). We took a subset of these images, calcu-
lated their relative transformations, and perturbed their ab-
solute pose together around the last image, as seen in Fig.
1. We experimented with the distance between these images
and found that at small distances the algorithm benefitted
little from the incorporation of previous frames. This comes
from the fact that there is little to no difference between im-
ages next to each other. In order to reduce the visual simi-
larity we decided to select frames around the reference ob-
ject based on distance and orientation changes. The further
these images lie from each other, the better coverage of the
space can be achieved. On the other hand, by increasing
the distance between the images, we attenuate our assump-
tion that the errors of their relative poses are insignificant
compared to the error in their absolute pose estimate. The
optimal choice of distance is application-dependent.

Initial translational error
0.9m 1.7m 3.4m

1 image 87.5% 50% 0%
8 images 87.5% 87.5% 25%
8 images + wide 87.5% 75% 25%

Table 2: Percentage of converged tests for the Blender
dataset with three different initial translational errors using
different pixel sampling methods.

The idea of sampling rays from more than one virtual
camera widens the range of the space where similarities are
searched for. Fig. 4 (c) and Table 2 show the results of

quantitative experiments of this modification. The incorpo-
ration of multiple input images seems beneficial when us-
ing images that are farther from each other (15° in degrees
where every camera is facing toward the object). At higher
initial errors we see a difference in convergence percentage
which shows that by using more images we can widen the
basin of convergence, leading to a more robust optimization
algorithm. Using a broader sampling space along the rays
improves the speed of convergence in these tests.

4.3. BID-NeRF vs iNeRF

Figure 5: Statistical analysis of convergence speed. All
eight objects are evaluated in the Blender dataset with three
different initial translational error sizes (left). Only the con-
verged experiments are included.
Combined results with statistical Mann-Whitney U test [15]
to check significance (right). Four * means that the p-value
is below 10−4.

Finally, we compare the iNeRF algorithm to BID-NeRF,
where all our proposals mentioned in Sec. 3 are incor-
porated. The statistical analysis of convergence speed for
all eight models from the Blender dataset with three differ-
ent magnitudes of initial translational error is shown in Fig.
5. Fig. 6 shows how the translational and rotational error
decreases during optimization for the chair object. BID-
NeRF vastly outperforms the iNeRF algorithm, especially
for larger initial errors.

Figure 6: Rotational (faded) and translational errors
throughout optimizations based on the chair object from
three different initial translational errors ([0.4, 0.8, 1.5] re-
spectively).

Fig. 7 shows an ablation study, where most of our mod-
ifications yielded significant improvements in terms of op-
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Figure 7: Ablation study showing the ratio of converged tests after each optimization step. 5 pose estimations were evaluated
from different poses for each object in the Blender dataset. The initial error formulation is identical to the test setup presented
in [26].

timization steps needed for convergence while also increas-
ing the domain of convergence. The configuration of the
experiments with regard to: the initial pose error, learning
rate, and pixel count was identical to the ones used in [26].
BID-NeRF achieved 95% convergence in both error types
after 1000 steps, while this percentage is only at 38% for
translational and 42% for rotational errors using the iNeRF
algorithm.

4.4. Real-time performance

Our proposed solution is NeRF model agnostic, in the
sense that it can be applied to any differentiable NeRF
model. For example, [11] is one of the fastest currently
available NeRF implementations, which renders an image
with a resolution of 1008×756 pixels of an LLFF object in
38-130ms depending on the desired quality using an Nvidia
RTX 3090 GPU. They achieved this result by using a depth
predictor network instead of the hierarchical sampling ap-
proach, significantly reducing the number of forward passes
in inference time. Our method performs 2048 forward and
backward evaluations to calculate the color and depth pre-
dictions and gradients for the input poses for every iteration.
This process only takes 8ms using the PyTorch implemen-
tation of AdaNeRF. (The PyTorch implementation achieves
a significantly lower performance compared to their real-
time CUDA-based renderer.) For the Blender dataset, our
method converges in 600-800 iterations for very high initial
errors, resulting in a runtime of 5-6s with AdaNeRF. In [13]
the same process with lower initial errors takes 15-20s on
an RTX 3090, and in [14] 200 update steps are required for
convergence, where one update step is 0.6 Hz for 300 parti-
cles and 1.8 Hz for 100 particles on an RTX 5000 GPU. Our
strategy of not using a particle filter framework and using a
better optimization objective pays off making BID-NeRF

superior compared to [13, 14] from a computational com-
plexity perspective.

It is important to note, that pose estimation for drift re-
moval does not have to be evaluated for every image. If
our method is used for continuous tracking, the errors in the
initial pose estimates are usually much smaller, resulting in
faster convergence.

5. Conclusion
Our proposed method BID-NeRF outperformed iNeRF

in image pose estimation by achieving 2-4 times improve-
ment in the speed of convergence, depending on the size
of initial perturbation, and improved robustness meaning
that successful convergence rate was 2.5 times better on the
Blender dataset. With the elimination of hierarchical sam-
pling the inference time of every optimization step was re-
duced by a factor of two, together with the storage require-
ments of the algorithm. The proposed extensions such as se-
quences of images with estimated relative poses and sparse
depth information are usually available in robotic systems,
thus there is no need for extra computational effort to pro-
duce the required data.
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